The occurrence and source identification of bisphenol compounds in wastewaters

Sci Total Environ. 2018 Mar:616-617:744-752. doi: 10.1016/j.scitotenv.2017.10.252. Epub 2017 Oct 31.

Abstract

This study reports the occurrence of eight bisphenols (BPs): bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bisphenol F (BPF), bisphenol S (BPS) and bisphenol Z (BPZ) in wastewaters (WWs). Sample preparation involved pre-concentration with SPE cartridges (Oasis HLB), followed by derivatization using N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide with 1% tert-butyldimethylchlorosilane. Chemical analysis was based on gas chromatography-mass spectrometry. A validated method with limits of detection (LODs) at ngL-1 range was applied to WWs collected at five Slovene wastewater treatment plants (WWTPs) and WW inflows from industrial, commercial and residential sources entering the sewerage systems of two catchments (Domžale-Kamnik (DK) and Ljubljana (LJ)). The presence of all BPs was confirmed in three inflows in DK and two inflows in the LJ catchments. High cumulative concentrations of all BPs were determined in WW from food processing facilities (LJ: 3030ngL-1 and DK: 599ngL-1). A high detection frequency was observed in the WW from two textile cleaning companies (6 BPs for LJ and 8 BPs for DK). The analysis of WW from WWTPs revealed that only BPF (36.7ngL-1) and BPS (40.6ngL-1) were >LODs in the influents, whereas other BPs were detected also in the effluents. BPZ was found in the highest concentration (403ngL-1 at WWTP-DK). WW collected at this WWTP also contained the highest amount of BPE (238ngL-1). Although BPs removal could not be directly compared between the WWTPs, with the exception of BPAP and BPB in the case of two smaller WWTPs (6.39%-43.2%) bisphenols were in general highly removed (≥96.2%). Finally, levels of BPC>LOD are reported for first time (WWTP in the DK catchment: 1.01ngL-1-11.8ngL-1; LJ inflow from food processing plant up to 2560ngL-1).

Keywords: Bisphenols; Removal efficiency; Source identification; Wastewater; Wastewater treatment plant.